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Abstract: In recent years, the deterioration of infrastructure facilities such as bridges has become a problem. Precautionary 

measures such as visual inspection and repair by humans are in place as countermeasures for aging; however, there are issues 

with cost and safety in such inspections. If inspection by robots becomes possible, both these aspects will be improved, which 

will significantly contribute to the maintenance of infrastructure facilities. In this paper, we propose a complex image 

processing technique to specify the location of feature points as coordinates through smartphone cameras to obtain the location 

information of feature points needed for positioning BIREM-IV-P developed to support bridge inspection. The corners located 

in the bridge inspection environment are used as feature points, and the corners are specified using Harris corner detection, 

which is a conventional corner detection method, to obtain the position of the feature points. In addition, to compensate for the 

shortcomings of Harris corner detection, a line segment in the image is detected using the Hough transform, and the 

intersection points of the line segments are recognized as corners. By combining the results of the two detection methods in 

this manner, the target feature points can be accurately specified. Then, the position of the feature points of the specified image 

coordinate system can be changed to the world coordinate system. As a result, it was possible to detect the location of the target 

feature points in a three-dimensional coordinate system. 
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1. Introduction 

In recent years, the aging of infrastructure facilities, such 

as bridges and tunnels, has become a problem. Much of the 

social infrastructure in Japan has been built after the high 

economic growth period. Although recently constructed 

bridges are designed to have a lifespan of 100 years, the 

general lifespan of bridges is known to be around 50 years. In 

addition, the proportion of bridges that have passed 50 years 

since construction is approximately 27% as of 2019, which 

will surge to approximately 52% after 10 years. In particular, 

the proportion of bridges shorter than 15 m in length will be 

approximately 59% in 10 years. In addition, there are about 

230,000 road bridges in the country with unknown 

construction years. At present, preventive measures such as 

visual inspection and repair by people are being undertaken 

as measures against aging. However, the bridge inspection 

method is currently performed by inspectors using 

scaffoldings and special crane vehicles, which require 

considerable time and inspection cost, and the lack of 

inspectors and safety issues pose problems. Therefore, if 

inspection by robots becomes possible, these problems will 

be alleviated, thereby significantly contributing to the 

maintenance and management of infrastructure facilities. 

In recent times, various robots are being developed as 

bridge inspection robots [1–9]. There are various types of 

robots, such as flying, suspension, and adsorption types, but 

they are mainly divided into flying and adsorption types 

[10-17]. Among them, the flying robot has a problem in that 

it is difficult to control because its balance is easily affected 
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by disturbances such as wind and contact with the bridge. In 

addition, there is a problem not only when moving, but also 

when hovering, because power is consumed to maintain 

posture and position; thus, it is not possible to conduct a 

long-term inspection. In contrast, adsorption robot can also 

be moved by adsorbing on the ceiling surface of the lower 

part of the bridge, and unlike flying robot, they do not use 

excessive power to control their posture and position even 

while stationary for bridge inspection. Therefore, in this 

laboratory, the Bridge Inspection Robot Equipped with 

Magnets version IV (BIREM-IV) was developed as a robot 

for bridge inspection [18]. The robot's features include the 

ability to move freely on steel structures because of the use 

of magnetic rimless wheels and a high driving capability. 

However, BIREM-IV and other bridge inspection robots with 

these characteristics are directly controlled by the inspector; 

hence, there is a requirement to develop a bridge inspection 

robot that is fully autonomous. 

The most important aspect of autonomous driving to detect 

of the robot's localization. However, it is difficult to detect 

the position of the robot as coordinates using the Global 

Navigation Satellite System (GNSS) because data from 

satellites cannot be received inside large buildings, such as 

inside bridge box girders. Therefore, using the characteristics 

of the light detection and ranging (LiDAR) sensor, we 

developed the planar LiDAR, which detects the position of 

the robot as coordinates based on the distance and direction 

data from the feature points fixed in the experimental 

environment, and installed it in BIREM-IV [19]. Figure 1, 

Figure 2, and Table 1 present the appearances, components, 

and specifications of BIREM-IV-P, respectively. 

 

Figure 1. Appearances of BIREM-IV-P. 

 

Figure 2. Components of BIREM-IV-P. 

Table 1. Specifications of BIREM-IV-P. 

BIREM-IV-P 

Length 140.0 mm 

Width 140.0 mm 

Total height 180.0 mm 

Mass 1.006 kg 

Battery LiPo, 11.1 V, 600 mAh, 65C 

MCU Arduino Mega 2560 R3 

The manufactured planar LiDAR can obtain 360° field of 

vision information based on the robot by rotating the long 

measuring distance and a compact one-dimensional LiDAR 

sensor using a stepping motor. In addition, the feature points 

of the inspection site can be set in advance using existing 

information on the bridge structure (design drawings and 

photos), and the position of the robot can be simply specified 

based on the feature point information. From these features, 

BIREM-IV-P is capable of localization using feature point 

information obtained from planar LiDAR. However, these 

methods can cause problems where fewer feature points are 

recognized by planar LiDAR; the greater the distance 

between the robot and feature points, the greater the error. 

Therefore, in this study, landmarks present in the advancing 

direction of the robot are detected using a camera, recognized 

as feature points, and three-dimensional position coordinates 

in millimeter units are derived from the obtained 

two-dimensional position coordinates in pixel units. Then, 

the reliability of the three-dimensional position coordinates 

of the obtained feature points is confirmed. 

2. Specific Feature Point Detection 

In this section, we propose a method for sensing corners in 

the advancing direction of the robot and detecting target 

feature points among the detected corners. We aimed to 

recognize the corners in the experimental environment 

through image processing of the video captured using a 

smartphone camera (OS: Android, Model: Galaxy S6 Edge 

Plus, Manufacturer: Samsung Electronics Co., Ltd). The 

feature points are fixed in the experimental environment, and 

their positions are specified as coordinates. 

2.1. Traditional Corner Detection 

 

Figure 3. Moravec corner detection.  

As a pioneering study in corner detection research, 

Moravec's corner detection method has been studied [20], 

based on which numerous methods have been proposed [21–

24]. As shown in Figure 3, corner detection sets a small area 

(window) of an image, and when that area moves gradually, it 



36 Hyunwoo Song et al.:  Localization Method Based on Image Processing for Autonomous   

Driving of Mobile Robot in the Linear Infrastructure 

is recognized as an edge or corner if the rate of change is large. 

If the rate of change on the x-axis or y-axis is large, it is an 

edge, and if both are large, it is a corner. 

However, this detection method clearly shows 

shortcomings at the edge of a diagonal line, because the 

diagonal line does not exhibit a large change in both the x and 

y directions. Thus, the Harris corner detection method solves 

this problem [25]. 

The Harris corner detection is used by converting the 

camera's two-dimensional color images to grayscale. If the 

image converted to grayscale is denoted as �, and the amount 

of change between the point (�, �) on the area and the point 

(� � �, � � �) moved by � and � respectively in the x and y 

directions is �	�, �
, it can be expressed as �	�, �	
 � ∑ �	�, �
��	� � �, � � �
 � �	�, �
���,�  (1) 

where � ( �, � ) is a window function that represents a 

Gaussian filter. Thus, Equation (1) calculates the amount of 

change smoothed by the Gaussian filter. Furthermore, if this 

equation is approximated using the Taylor expansion, it 

becomes 

�	�, �	
 � ��, ��� ����             (2) 

The matrix � in this equation is 

� � ∑ �	�, �
 � ��� �������� ��� ��,�           (3) 

where ��  and ��  are image derivatives in the x and y 

directions respectively. When [��, ��] is squared, it becomes 

the matrix part of �. This matrix part is a matrix describing 

the variation of �, and it is possible to determine edges or 

corners by singular value decomposition. However, because it 

is difficult to calculate complicated eigenvalues, we use the 

following equation: � � det	�
 � �	trace	�

� 

# det	�
 � $%$�trace	�
 � $% � $�               (4) 

where det	�
 is the determinant of the matrix, trace	�
 is 

its trace, � is a constant that is generally 0.04 to 0.06, and $% 

and $� are the eigenvalues of �. It can be seen that the value 

of � can be obtained from these. In addition, the eigenvalues 

of � can be classified as shown in Figure 4. 

 

Figure 4. Classification of image points using eigenvalues of �. 

As a result, we were able to detect the corners using the 

Harris corner detection method. However, it was not possible 

to identify which of the detected corners was the target feature 

point. 

2.2. Corner Detection Method Specialized in Feature 

Detection of Proposed Target 

It was possible to capture the target feature point candidates 

using the Harris corner detection method described in the 

previous section. However, it was not possible to reliably 

identify the landmarks as feature points. Therefore, as shown 

in Figure 5, the proposed method obtains the target feature 

points by associating the feature points obtained by Harris 

corner detection with the feature points obtained by Hough 

transformation. 

 

Figure 5. Flowchart of proposed method. 

2.2.1. Canny Edge Detection 

The Canny edge detection method is often used to extract 

the contour of an image, and it performs noise removal, 

contour extraction, non-maximum suppression, and 

hysteresis threshold processing in sequence [26]. As a 

feature of Canny edge detection, it is possible to reduce the 

number of edges that cause noise using two thresholds, as 

well as the number of omissions and false detections of 

contours. 

The input image is smoothed using a Gaussian filter to 

calculate the differential of the smoothed image. Therefore, 

the contour is detected by calculating the magnitude and 

direction of the gradient from the differentiated result, 

performing non-maximum suppression processing and 

hysteresis threshold processing. 

The Gaussian filter is a filter used to smooth images. 

Natural smoothing can be performed by using the weighting 

of the pixel values around the pixel to be processed and the 

Gaussian distribution. & � �'(                   (5) 

where & is the smoothed image, � is the input image, and '( 
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is the kernel of the Gaussian filter. The obtained smoothed 

image is differentiated using the Sobel filter. The images of 

the horizontal differential &� and vertical differential &� of 

the Sobel filter are expressed as &� � &'� &� � &'�                   (6) 

where the magnitude and direction of the gradient are 

calculated from the differential image. From the differential 

image &, the magnitude of the gradient |&| and direction of 

the gradient * are expressed as 

|&| � +&�� � &��  

* � tan-% ./0/12                (7) 

To simplify the implementation of the thinning process, the 

contour of the differential image |&|  by non-maximum 

suppression processing is subdivided. Then, the thinning 

process is performed to supplement the lines. Finally, 

hysteresis threshold processing is performed, and reliable and 

unreliable contours are selected from two thresholds 

(maximum and minimum). The evaluation of contour 

reliability is presented in Table 2. 

Table 2. Contour evaluation. 

Pixel value Evaluation 

Less than the minimum threshold Unreliable contour 

Minimum threshold to maximum threshold If there is a highly reliable contour next to it, it is a highly reliable contour. Otherwise unreliable contour 

Greater than the maximum threshold Reliable contour 

 

2.2.2. Hough Transform 

The purpose of the Hough transform is to perform 

groupings of edge points into object candidates by 

performing an explicit voting procedure over a set of 

parameterized image objects [27]. The Hough transform is 

executed using the image adaptation obtained by Canny edge 

detection to detect the straight lines in the image. As shown 

in Figure 6, a straight line can be represented by two 

parameters 3 and � shows as 

 

Figure 6. Straight line expressed in �� coordinates. 

3 � � cos * �� sin * 

� � 789:9;< : � � =9;<:               (8) 

In Figure 6, A is the point before the Hough transform. As 

shown in Figure 7, the straight lines passing through point A 

can be represented by 3 and *. 

 

Figure 7. Straight line expressed inρ-θ coordinates. 

Because of the symmetry of the figure, * is considered 

only as (0 ? * ? @). In addition, 3 is never longer than the 

diagonal of the input image. There are as many curves in 

Figure 7 as the number taken up by the Hough transform. In 

other words, point B where many curves obtained intersect is 

a straight line where a set of 3 and * strongly predicted 

from multiple points of the input image is detected. 

2.3. Verification Experiment 

In the experiment, feature points were detected based on the 

proposed method using 640 × 480 pixel input images obtained 

from a smartphone camera. As shown in Figure 8, the input 

image is converted to grayscale. 

 

Figure 8. Input photograph. 

Figure 9 shows the result of converting the input image of 

the camera to grayscale. 

 

Figure 9. Grayscale image from input photograph. 

Figure 10 shows the result of feature point detection using 
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the Harris corner detection method, which is the conventional 

corner detection method described in the previous section, for 

this grayscale image. 

 

Figure 10. Result of Harris corner detection. 

In these figures, the positions surrounded by the white 

circles are detected as corners. Harris corner detection enables 

the detection of corners, but it can be observed that corners 

other than the target feature points have also been detected. 

Therefore, we focused on the geometric features that appear 

near the corners and narrowed down the target feature points. 

For this reason, as shown in Figure 11, noise is removed from 

the grayscale input image by Canny edge detection, and the 

Hough transform is performed to detect straight lines in the 

image. 

 

Figure 11. Result of Canny edge detection with Hough transform. 

Then, as shown in Figure 12, the intersection of the lines 

obtained from the Hough transform is located, and the target 

feature points are among these intersections. 

 

Figure 12. Intersection of two lines. 

The line segment equations obtained at the start point (�%, �%) and end point (�� , ��) of the line segment are shown 

below. However, the x-axis is positive upward, and the y-axis 

is positive right. � � �A-�B�A-�B � � �� � �A-�B�A-�B ��         (9) 

In addition, the coordinates of the intersection P of the line 

segment obtained from the other start point (�%′, ��′) and the 

end point (��′, ��′) can be obtained. It is expressed as 

D� � EFG � HF I 	��
 � EJ I 	��K
HF � EJ  

D� � L/MNO/I	�B
-LPI	�BQ
O/-LP                (10) 

where E � �% � �� , H � �% � �� , F � �%K � �%K , J � �%K ���K , G � ��K � ��  and R � ��K � �� . In addition, only 

intersections with an angle *  ( 0° ? * ? 90° ) between 

straight lines of 45° or more are considered to prevent the 

detection of unnecessary intersections as follows: tan * � UA-UB%NUAUB V 1                (11) 

where X% and X� are the inclinations of the straight lines 

and are expressed as X% � �A-�B�A-�B , X� � �AK-�BK�AK-�BK           (12) 

To the images obtained using the Hough transform, the 

above is applied to specify the intersection points of the lines. 

The identified intersection points are represented by green 

circles as shown in Figure 13. 

 

Figure 13. Derivation of intersections between straight lines. 

As a result, candidates for multiple feature points can be 

obtained from geometric features. However, it was confirmed 

that there are many candidates for feature points and points 

other than corners are also recognized. The above is applied to 

the results obtained from Harris corner detection and the 

results are shown in Figure 14. Based on the above results, it 

was confirmed that the target corner was recognized as the 

feature point by combining Harris corner detection with data 

obtained from the Hough transform. 

 

Figure 14. Corner detection of proposed method. 
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3. Correspondence Between 

Two-Dimensional and 

Three-Dimensional Points 

As described in the previous section, image processing 

was performed using the image data obtained from the 

camera. The experimental result confirmed that the image 

coordinates obtained in pixel units of the target feature 

points in the image were obtained. However, the position in 

the experimental environment cannot be confirmed by the 

pixel-based image coordinates on the image. Therefore, this 

section describes the process of obtaining 

three-dimensional position coordinates in millimeter units 

from these image coordinates. 

 

(a) Rotation around Z-axis 

 

(b) Rotation around Y-axis 

 

(c) Rotation around X-axis 

Figure 15. Representation of posture by ZYX Euler angle. 

The camera's posture, considering that it will cover 

subsequent three-dimensional composite paths, is adopted by 

the positioning method by Euler angles. Figure 15 presents the 

posture expression by Euler angles, and the direction of 

rotation is clockwise with respect to the positive directions of 

the X-axis, Y-axis, and Z-axis. The Euler angles are a method 

of expressing the posture of a rigid body as Y, Z, and [. In 

addition, there are various expressions for Euler angles such as 

ZXZ Euler angles and XYZ Euler angles, but herein we use 

ZYX Euler angles. Then, the ZYX Euler angles are rotated once 

around the Z-axis, as shown in Figure 15 (a), once around the 

Y-axis, as shown in Figure 15 (b), and once around the X-axis, 

as shown in Figure 15 (c). This can be associated with roll 

angles, pitch angles, and yaw angles depending on the camera 

position. 

Then, the ZYX Euler angle is indicated a rotation matrix �. 

The rotation matrix � rotating by angles Y, Z, and [, around 

each axis of Z, Y, and X, denoted as �\ , �] , and �^ , 

respectively, can be expressed as 

�\	α
 � `cos Y � sin Y 0sin Y cos Y 00 0 1a  

�]	Z
 � ` cos Z 0 sin Z0 1 0� sin Z 0 cosZa 

�^	[
 � `1 0 00 cos [ � sin [0 sin [ cos [ a         (13) 

Then, using the above equation, the rotation matrix � of 

the ZYX Euler angles can be expressed as � � �\	Y
�]	Z
�^	[
 

� bcdce cdfefg � fdcg cdfecg � fdfgfdce fdfefg � cdcg fdfecg � cdfg�fe cefg cecg h    (14) 

where it is represented by cd � cos Y , fd � sin Y , 	ce �cos Z , fe � sin Z , cg � cos [ , and fg � sin [  for 

simplification. 

3.1. Perspective Projection Transformation 

In the perspective projection camera model, the point Di in 

the world coordinate system is rendered as the point Dj  in the 

image coordinate system using a smartphone camera, as 

shown in Figure 16. 

 

Figure 16. Relationship of each coordinate system.  
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The point Di in the world coordinate system is placed as an 

arbitrary three-dimensional point viewed from the camera 

located at the origin O7 of the camera space, and the point Dj  
in the image coordinate system is an image of point Di 

represented by the image coordinate system. The point Dj  
represents the pixels of the image captured by the camera, 

which are formed by intersecting the optical center of the 

camera with the rays from the point Di passing through the 

image plane. When the point Di  in the world coordinate 

system is represented by the point Dj  in the image coordinate 

system, it is expressed as 

lminioip � �-% qrs-% ���1� � tu           (15) 

where � denotes a 3 × 3 rotation matrix, t denotes a 3 × 1 

smooth matrix (external parameter), s  denotes a camera 

matrix (internal parameter), and r denotes a constant. The 

external parameters represent the conversion from the world 

coordinate system to the camera coordinate system, and the 

internal parameters represent the conversion from the camera 

coordinate system to the image coordinate system. 

3.1.1. External Parameters 

The external parameter is a matrix that converts the world 

coordinate system into the camera coordinate system. If the 

world coordinate point viewed from the world coordinate 

system is Di � 	mi ni oi
v and the camera coordinate 

point viewed from the camera coordinate system is DP �	mP nP oP
v, it can be expressed as 

lmPnPoPp � lw%% w%� w%xw�% w�� w�xwx% wx� wxx
t%t�txp y

minioi1 z 

� ��|t� yminioi1 z � {|}|~ yminioi1 z             (16) 

The simultaneous transformation matrix {|}|~  was used to 

express the camera's posture and position. In addition, the 

camera attitude can be expressed using the three degrees of 

freedom of the Euler angle. Originally, the Euler angle has a 

singularity, so there are postures that cannot be uniquely 

expressed by only one Euler angle. However, in this study, 

feature points are detected on the ceiling surface, and only the 

yaw angle direction is considered, thus it can be expressed. 

3.1.2. Internal Parameters 

The internal parameter is a matrix that converts the camera 

coordinate system into the image coordinate system. To 

explain this, it is necessary to clarify the conversion from the 

camera coordinate system to the normalized image coordinate 

system. The normalized image coordinate system is a 

coordinate system that considers an image plane placed at a 

reference position at the center of the image plane. 

From Figure 17, the normalized image coordinate point D� 

can be expressed as 

r �����1 � � lmPnPoPp                  (17) 

 

Figure 17. Normalized image coordinate system. 

The actual perspective projection point D� is observed at a 

shifted point D�K  under the influence of lens distortion, as 

shown in Figure 18. This change is calculated based on the 

following lens distortion model: 

 

Figure 18. Lens distortion in image coordinate system. ' � 	�%, ��, �x, �%, ��
            (18) ��K � ��	1 � �%w� � ��w� � �xw�
� �2�%���� � ��	2��� � w�
� ��K � ��	1 � �%w� � ��w� � �xw�
� ��%	2��� � w�
 � 2������� 	w� � ��� � ���
             (19) 

where ' is a parameter that expresses the degree of distortion, �%, ��, and �x represent the strain in the radial direction, and �% and �� represent the strain in the circumferential direction. 

The point D�K  in the normalized image coordinate system 

expresses the position with the center of the image plane as the 

origin. In contrast, in the image coordinate system, the upper 
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left side of the image is used as the origin and expressed in 

pixel units, as shown in Figure 19. 

 

Figure 19. Relationship between normalized image coordinate system and 

image coordinate system. 

The point Dj  in the image coordinate system can generally 

be calculated as follows: 

���1� � lR� 0 F�0 R� F�0 0 1 p l��′��′1 p � s l��′��′1 p       (20) 

where s  is called the camera matrix as described at the 

beginning of this section, (R�, R�) represents the focal length in 

pixel units, and ( F� , F� ) represents the optical center 

(principal point) in pixel units. Based on the above, it can be 

expressed as follows: 

r ���1� � lR� 0 F�0 R� F�0 0 1 p ��|t� yminioi1 z � s��|t� yminioi1 z (21) 

3.2. Estimating of Internal Parameter Using Camera 

Calibration 

Calibration of the camera is used to estimate the focal 

length of the camera, deviation of the center of the image, and 

distortion of the lens. As shown in Figure 20, by using a 

chessboard of a plane with known coordinate information, 

internal parameters related to the camera are obtained using 

the correspondence between the two-dimensional points and 

three-dimensional points as follows. 

 

Figure 20. Camera calibration using chess board. 

s � lR� 0 F�0 R� F�0 0 1 p 
� l492.15 0 322.710 492.19 179.070 0 1 p    (22) 

	unit:	pixel
  ' � 	�%, ��, �x, �%, ��
 � 	0.320, �2.02, 4.60, �0.001, 0.002
      (23) 

Based on the internal parameters s  and '  estimated 

above, the prepared image (640 × 480) is corrected, and the 

result is shown in Figure 21. From Figure 21 (b), it can be 

confirmed that the image is calibrated. 

 

Figure 21. Result of calibration. 

4. Experiment in Real Environment 

In this study, the goal of the bridge inspection robot's 

location estimation is to recognize the position of the feature 

point necessary for location estimation as three-dimensional 

coordinates, and thereby improve the reliability of location 

estimation. Therefore, by combining the existing Harris 

corner detection method and the Hough transform to reinforce 

the problem, the feature points located in the camera shooting 

direction is detected, and the position is specified as 

three-dimensional coordinates. To investigate whether the 

results described in the previous section can be reproduced in 

the actual environment and how reliably they can be obtained, 

the experiment was conducted in the environment shown in 

Figures 22 and 23. 

 

Figure 22. Experimental environment. 
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Figure 23. Simplified diagram of experimental environment. 

As shown in Figure 22, this experimental environment has 

been used for a robot running on the ceiling surface, where the 

rotation matrices around mi, ni, and oi are defined as �^, �], and �\ and represent the pitch angle, yaw angle, and roll 

angle in the camera, respectively. In addition, as shown in 

Figure 23, the angles Y and [ in the pitch and roll directions 

are treated as zero, and thereby, the rotation matrix can be 

expressed as � � �\	0
 I �]	Z
 I �^	0
 

� b ce 0 fe0 1 0�fe 0 ceh.             (24) 

In this experiment, by providing initial conditions, the 

position of the target feature point Di was converted from the 

image coordinate system to the world coordinate system and 

compared with the position of the actual feature point. 

Regarding the conditions of the experimental environment, the 

calculation was performed with Z � 0  (rad), mi � �200 

(mm), and ni � 35 (mm). In addition, coordinates oi on the 

Z-axis at the feature point Di were considered at five locations: 

500, 600, 700, 800, and 900 mm. By image processing using the 

method proposed in the previous section, the coordinates of 

feature points in pixel units in the image coordinate system 

were detected based on the image at each position. 

As described above, experiments were conducted for the 

detection of each feature point at each position of oi, and the 

results are shown in Table 3. 

The pixel coordinates (�K , �K ) of the obtained image 

coordinate system are compared with the pixel coordinates (�, �) of the feature points of the actual coordinates in the image 

coordinate system, and the results are shown in Figure 24. 

Table 3. Coordinates of feature points in the image coordinate system. 

�� (mm) 
Real pixel coordinates Estimated pixel coordinates � (pixel) � (pixel) �K (pixel) �K (pixel) 

500 123.61 213.84 112.0 213.5 

600 156.55 208.1 151.5 207.0 

700 180.34 203.95 189.55 201.36 

800 198.28 200.82 206.25 203.76 

900 212.25 198.38 214.0 202.0 

In the figure, the red circle is the feature point in real coordinates, and the blue circle is the position of the feature point 

obtained from the image processing. The feature points DiK in the world coordinate system obtained by image processing can 

be calculated as shown in Table 4. 

Table 4. Coordinates of feature points in the world coordinate system. 

�� (mm) 
Estimated three-dimensional coordinates ��K

 (mm) ��K
 (mm) ��K

 (mm) 

500 -200.0 32.675 467.137 

600 -200.0 32.621 574.911 

700 -200.0 33.475 739.208 

800 -200.0 42.39 845.201 

900 -200.0 42.177 905.428 

The comparison of the coordinates of the feature points (miK, niK, oiK) obtained by calculation and the coordinates of the 

actual feature points (mi, ni, oi) are shown in Figure 25. 
Table 5. Comparison between real and estimated coordinates in world and image coordinates. �� (mm) Error in the world coordinate system (mm) Error in the image coordinate system (pixel) 

500 39.945 11.615 

600 25.202 5.168 

700 39.237 9.571 

800 45.802 8.497 

900 8.999 4.021 
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Figure 24. Comparison between real and estimated coordinates in image 

coordinates. 

 

(a) Where the coordinate oi = 500 (mm) 

 

(b) Where the coordinate	oi = 600 (mm) 

 

(c) Where the coordinate oi = 700 (mm) 

 

(d) Where the coordinate	oi = 800 (mm) 

 

(e) Where the coordinate	oi = 900 (mm) 

Figure 25. Comparison between real and estimated coordinates in world 

coordinates. 

The error distances between the two feature points obtained 

by comparing the position of the feature point acquired by the 

image processing with the feature point of the actual 
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coordinate in the image coordinate system and world 

coordinate system are shown in Table 5. 

The experimental results demonstrate that we were able to 

identify the corners from the images captured by the smartphone 

camera and detect the feature points from them. In addition, by 

converting the pixel coordinates of the feature points in the 

detected image coordinate system into world coordinates, it was 

confirmed that the position of the feature points was specified as 

coordinates. The results of comparing the feature points 

identified from the respective positions with the feature points of 

actual coordinates indicated an error of 7.774 pixels on average in 

the image coordinate system and 31.837 mm on average in the 

world coordinate system. However, in the lower part of the 

bridge, which is the actual experimental environment, the 

distance between the feature points is within 100.0 mm, and if the 

error is within 21.3 pixels, it can be recognized as the same. 

Therefore, the results of this experiment were within the 

acceptable error range. Therefore, it was confirmed that the 

method proposed in this study could be useful. 

5. Conclusion 

In this study, image processing was performed using a 

smartphone camera, and corners were detected as feature points. 

Based on the data obtained, and the feature points of the actual 

coordinates, a quantitative evaluation was performed. 

The image processing was performed using Harris corner 

detection, which is a conventional corner detection method. 

However, Harris corner detection has problems, including 

erroneous recognition of other feature points with luminosity 

changes such as scratches and erroneous recognition of 

oblique lines. Therefore, to overcome these problems, we 

focused on geometric features such as the corners of the 

structures and attempted to capture the target feature points. 

For this purpose, straight lines were detected by acquiring the 

contours using the Canny edge detection method and 

performing the Hough transform. 

From the perspective projection transformation of the 

perspective projection camera model, the relational 

expression between the world coordinate system and the 

image coordinate system was calculated. By performing 

perspective projection conversion on the pinhole camera 

model using a smartphone camera, the relational expression 

between the world coordinate system and image coordinate 

system was derived, and the coordinates obtained by image 

processing and actual coordinates were compared. As a result 

of comparing and evaluating the estimated and actual 

coordinates, it was found that the proposed method showed 

high accuracy with an error within the acceptable range. 

In the future, the shooting position of the camera will be 

estimated using the robot position information obtained from 

the LiDAR mounted on the bridge inspection robot 

BIREM-IV-P. In addition, the coordinates of the feature point 

detected from the position will be combined with the feature 

point information from the LiDAR sensor. Thus, errors in the 

position coordinates of the feature points can be reduced, and 

the accuracy of localization can be improved. 
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